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AN ASSESSMENT OF PREWHITENING IN ESTIMATING POWER SPECTRA
OF ATMOSPHERIC TURBULENCE AT LONG WAVELENGTHS

Samuel R. Keisler® and Richard H. Rhyne
Langley Research Center

SUMMARY

An assessment is given of the effects of prewhitening on
determination of power spectra of atmospheric turbulence at long
wavelengths. 1In a computer experiment, a synthetic time history
was generated by combining sine waves of random phase and fre-
quency (but uniformly distributed over the frequency range of
interest) with amplitudes adjusted to produce a power spectrum
of known shape approximating that of atmospheric turbulence. The
synthetic time history was then used to assess bias errors in
power spectra computed by three different algorithms implemented
by the fast Fourier transform.

Prewhitening is unnecessary when using the narrow "spectral
windows" required for determining power spectra of atmospheric
turbulence below the "knee" frequency, or at very long wavelengths.
Several wide spectral window cases are also included to assess the
effect of first-difference prewhitening on data where the first
spectral estimate is above the knee frequency.

INTRODUCTION

The generally accepted mathematical model of the power spec-

tral density function for atmospheric turbulence (the Von Karman

*spc Integrated Services, Inc.



model; see ref. 1) describes the amplitude of the spectrum as
nearly constant at very low frequencies, varying inversely with
the five-~thirds power of frequency at the higher frequencies.

The transition between these frequency regions is often referred
to as the "knee" and occurs at a frequency that is dependent on
the integral scale of turbulence (L). The knee frequency, and
therefore the scale of turbulence, is significant with respect to
the calculated motion and load responses of aircraft (ref. 1).

The adequacy of the Von Karman spectrum as a model of atmo-
spheric turbulence has not been assessed sufficiently. Although
the shape of the spectrum at high frequencies has been shown to
agree with measured turbulence spectra, there is still uncertainty
about the representation by the Von Karman spectrum at frequencies
associated with and below the knee of the theoretical spectrum.
This is caused, to a large extent, by difficulties in accurately
determining values in the low frequency region of spectra of atmo-
spheric turbulence from flight measurements. These difficulties
include (1) obtaining adequate length samples, (2) inaccuracies
in measurements of airplane motions that are required to extract
the turbulence velocities, and (3) errors introduced by the con-
version of the measured time histories of the velocities to power
spectral density functions. Efforts are underway to reduce errors
from the first two sources. This report is concerned with the
third problem cited.

A significant source of error in the determination of experi-
mental spectra is the bias error associated with data processing.
The bias error is negligible for spectra of essentially constant
amplitude, but it can produce an unacceptably large distortion in
spectra exhibiting large changes in amplitude. Therefore, the
high-frequency region of the turbulence spectrum, where the ampli-
tude varies inversely with the five-thirds power of frequency, is
susceptible to bias error. Press and Tukey (ref. 2) introduced a
conditioning process called prewhitening to reduce the distortion
of turbulence spectra substantially (that distortion caused by



data processing) at the higher frequencies since the higher fre-
quency range was the region of particular interest at the time.
The prewhitening procedure, which has become routine, renders the
high-frequency range of the spectrum to nearly constant amplitude
during processing. The effect is then removed (postdarkened) for
final data presentation. If, however, the actual turbulence spec-
trum in the low-frequency region is nearly constant, as suggested
by the Von Karman spectrum model, the prewhitening process results
in a bias distortion of the spectrum in this low-frequency range.
Current interest in improved definition of measured spectra at low
frequencies prompted a reassessment of the use of the prewhitening
process and other aspects of the bias error problem.

The present computer study1

is similar in approach to the
study described in reference 3 in that spectra are estimated by

the digital processing of a synthetic random time function that
simulates the velocities of atmospheric turbulence. In contrast

to reference 3, which examined the effects of various methods of
prewhitening, the present study compares spectra obtained with and
without prewhitening, with emphasis on the effects at low frequen-
cies. The method used in this study to generate the synthetic ran-
dom time function differs from the method used in reference 3; the
reasons for this different method are discussed in a later section.
The data processing methods consist of three commonly used fast
Fourier transform (FFT) algorithms: (1) Blackman-Tukey,

(2) ensemble averaging, and (3) frequency averaging.
SYMBOLS

Values are given in both SI and U.S. Customary Units. The

measurements were made in U.S. Customary Units.

1Recommended by Mr. Allan Piersol (Bolt, Beranek, and Newman,
Inc., Canoga Park, CA).
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H(f)

i,j,k,n

k'

equivalent spectral bandwidth, Hz

dimensionless equivalent spectral bandwidth,

2nL

v e

frequency, Hz

smoothed power spectral density estimate at frequency
i aAf

raw power spectral density estimate at frequency
i af

transfer function
index, integer variable

number of points, including zeros, transformed
by fast Fourier transform (power of 2)

2nfL
v

dimensionless wave number,

integral scale of turbulence

number of nonnegative lags of time-sampled autocorrelation

function

number of contiguous raw power spectral density estimates
which are used to compute each point of frequency aver-
aged power spectral density; or number of signal seg-
ments used in computing ensemble average power spectral

density



AT

At

integer constant, i.e., final integer in function
sequence

time length of function (or segment of function)
being transformed

frequency-sampled spectral estimate at frequency
i af

turbulence sample length, sec
time, sec

velocity

random time function

time function sampled at time i At

prewhitened random time function

prewhitened time function saﬁpled at time i at
frequency interval, Hz

time sampling interval, sec

phase angle, rad

lag time

maximum lag time

power spectrum as function of f



power spectrum as function of k'

3

S true Dryden spectrum undistorted by bias error
L power spectrum of postdarkened time function
Qy power spectrum of prewhitened time function

w angular or circular frequency, 2nf

wq circular frequency integration variable

APPROACH

Since the primary purpose of this study is to assess the value
of prewhitening in reducing bias error in estimated spectra at low
frequencies, a review of bias error is appropriate. This review
includes: (1) properties related to the general digital processing
of a random time function, (2) effects at high and low frequencies,
and (3) a brief description and discussion of the prewhitening pro-
cess. The review is followed by descriptions of the three digital
algorithms for estimating power spectral densities and their rela-
tive bandwidth properties. The properties of a synthetic random
time function needed to represent atmospheric turbulence velocities
are then discussed, and the two functions used in numerical calcu-
lations are described. The conditions selected for estimating

power spectral densities are stated and results are discussed.

BIAS ERROR

Each of the power spectral density algorithms considered here
uses the Fourier transform of a time function of finite length. The
following discussion is equally applicable to the Fourier transform
of a finite length autocorrelation function as well as a finite



length time function. Further details are given on page IVC:19 of
reference 2. The finite time length of a time function affects the
measured spectral function and can be considered the product of an
infinite length function (given the subscript "true") and a "boxcar"
function (fig. 1(a)). The measured and the true time functions are

equal when — < t < =, The measured time function is equal to zero
2 2

for all other values of time. The Fourier transforms of the two
time functions are related by the convolution integral

P
sin (o - wq)=
@ 2
?neas (@) = % pue (0 1)P ' duw 4 (1)
S ( )P
w - W -—
L

where °true(w) is the "true" spectrum for limit P » « and the

sin x ) ) .
< term is the spectral "window." (See fig. 1(b).) The differ-

ence between °meas(“) and °true(“) is defined as the bias error.

(This example is applied to the boxcar window; however, the same
relation would hold for other windows.) Convolution can be under-
stood heuristically by considering its effect on an arbitrary spec-
tral estimate °meas(”)’ according to the following procedure:
Shift the spectral window so that it is centered at w; form .the
product of the true spectrum ¢+ pue and the shifted window; then
®meas(®) is the integral of this product.



The strongest objection to the boxcar window concerns "leakage
through the side lobes" (fig. 1(b)); the side lobes are those por-

1 2 2
tions of the window between - and -, between -~ and 2, and
P P P P

-1

— and is called the "main
P

so forth. (?he portion befween ;
lobe.") When the process of convolution is kept in mind, it can be
seen that any portion of the true spectrum which is multiplied by

a side-lobe peak during convolution can have a significant effect
upon the estimate.

This deficiency in the boxcar window is largely overcome in
windows, such as the Hann window (ref. 4), shown in figures 2(a)
and 2(b), which taper the ends of the function. The Hann side
lobes are greatly reduced in relation to the boxcar side lobes.

Figure 3 illustrates a typical bias error encountered in esti-
mating the power spectrum. The true spectrum together with the
shifted spectral window are shown with linear scale on each axis.
The true spectrum ¢;,.,.(w) shown in figure 3 is an approximation
of the Von Karman turbulence model, and is discussed later in more
detail. It can be visualized that the magnitude and sign of the
bias error depend primarily upon the broadness and general shape of
the main lobe of the spectral windown and its position along the
frequency axis with respect to the true spectrum. In general, the
peak of the true spectrum is underestimated, and all other values
overestimated.

Each of the three power spectral density algorithms is asso-
ciated with a different variant of the fundamental spectral window
described above. The differences among these variants are affected
very little by the time window chosen, e.g., Hann, Hamming, or Parzen
(see ref. 4). For this reason, only the Hann time window is consid-
ered here.




PREWHITENING

The prewhitening process consists of filtering the random time
function so as to produce a nearly flat spectrum at frequencies
above the knee. (The purpose, as stated earlier, is to reduce or
eliminate the bias error caused by the window convolution illus-
trated in fig. 3.) The spectral estimates are then "postdarkened"
to correct for the initial prewhitening. The most commonly used
prewhitening process is the first-difference method

y(t) = x(t) - x(t - at)
or in digitized sample form

e e L (2)
The spectfum estimated from the prewhitened function by a particu-

lar digital algorithm is then postdarkened as follows before final
data presentation

e, (f) = ¢, (f) (3)
|H(f)|

where

1 1

'H(f)|2‘_ 2(1 - cos 2af At)

(See ref. 2, or appendix E of ref. 8.)

The true spectrum o¢(f) of figure 3 is shown in figure 4
as Qy(f) after the first-difference prewhitening filter has
been applied, i.e., @, (f) = ep(f) |H(f)|2. The knee frequency
of figure 3 is indicated by an arrow on the abscissa of figure 4,



(The frequency scale in fig. 4(b) is exaggerated in comparison

to the scale of fig. 4(a) to show more clearly the low~frequency
region.) It is apparent that the bias error will be positive at
the knee frequency and below, and will become larger as the spec-
tral window becomes broader. At frequencies well above the knee,
as the prewhitened spectrum becomes more nearly flat, the bias
error will become negligible, even though the spectral window is
quite broad.

POWER SPECTRAL DENSITY ALGORITHMS

The turbulence time histories are sampled in time at interval
At. The time function is denoted by X; and is the value of the
function sampled at time i at (where i =1, 2, . . ., N); then
discrete spectral estimates s;' corresponding to harmonic frequen-

N
cies i Af are computed by the FFT (;here i=0,1,2, . . «y —
2

1
and Af = >. The time length of the function (or segment of

NaAat

function) being transformed is P = N at; so

(W)

where Af 1is the frequency spacing of the original "raw"
estimates. Each of the power spectral density algorithms

is now examined together with its associated spectral window.
Blackman-Tukey

The technique for computing the autocorrelation function
with Fourier transforms rather than with lag products as used

10



in the past is given in reference 4 (pp. 165 and 166). The
Blackman-~Tukey FFT power spectral density algorithm is outlined
briefly in the following eight steps.

(1) Let K, which must be a power of two, be the number of
points being transformed. Let & be the number of nonnegative
lags required for the autocorrelation function. Only K - &
data points can be used, since the last ¢ values of the points
being transformed, at least, must be zeroed to avoid the circular
autocorrelation effect (ref. 4, pp. 123 and 124). The mean of
the data function is removed and the correct number of zeros
is added.

(2) Optional prewhitening: the first difference filter is
applied (eq. (2)).

(3) The FFT is computed to yield the complex amplitude
spectrum.

(4) The "raw" power spectrum is computed as the scaled
square modulus of the result of step (3).

(5) The inverse FFT is computed to produce the autocorrela-
tion function.

(6) The Hann window is applied.

(7) The FFT is computed to obtain the power spectrum, which
is then scaled to obtain the power spectral density.

(8) Postdarkening (if option (2) is selected) is applied as
indicated by equation (3).

The autocorrelation function computed in step (5) is defined

for -1, < v £ v, where =t is lag time and 7ty = (¥ - 1)ag.

m
The quantity & 1is adjusted to truncate the autocorrelation func-

tion at an appropriate maximum lag which results in the desired

Tm
spectral window width Be' For convenience in the FFT procedure,
2 - 1 Bs8hould also be a power of two. If = is set equal to

m

1
in equation (4), Af @ ——. When the Hann window shown in fig-

21m

ure 2 is used in step (6), then the spectral windows for two adjacent

11



spectral estimates at frequencies i Af and (i + 1)Aaf will
be as shown in figure 5. The mechanics of the Blackman-Tukey
algorithm are such that the frequency spacing of the final power

estimates Af 1is always —l—, and the effective spectral window
Tm
1

width Be is ;; or 2 Af. A rather large degree of window
overlap for adjacent spectral estimates is shown in figure 5.
It is apparent, therefore, that such estimates are not strictly
independent. For this reason, it is sometimes advocated that
every other estimate be discarded when employing this algorithm.

Consider now the estimate sg at zero frequency. The zero
frequency component of the signal (i.e., mean) was removed in
step (1). Therefore it appears that Sg 1is an estimate of the

power at positive frequencies. For this reason, s is (somewhat

Af
arbitrarily) displayed at frequency z— in this paper.

Ensemble Averaging

This algorithm is described in detail in reference 5. A
brief outline follows.

(1) The time function is partitioned into M segments of
equal length, with the number of points in each segment a power
of two. Steps (2) to (6) must be performed independently for
each segment.

(2) The mean of the function is removed.

(3) (Optional prewhitening) The first difference filter is
applied.

(4) The side-lobe suppression window is applied.

(5) The FFT is computed to obtain the complex amplitude

spectrumn.

12



(6) The power spectral density estimates are computed as the
scaled square modulus of the amplitude spectrum.

(7) The M segment power spectral density functions are
averaged.

(8) (Optional) Postdarken.

In reference 5, the observation is made that the expected
value of the spectrum at each point is the convolution of the true
spectrum with the square of the spectral window if the time window
is even (a proof of this is given in ref. 6). All commonly used
windows (including the Hann window) are even.

The squared Hann window is shown in figure 6. It is the
effective window in the limit as the length of the signal, and
therefore the number of segments used, increases without bound.
For this reason, the squared spectral window will be referred to
here as the "expected window."

Figure 6 shows that the ensemble average window bandwidth

Be, that is, the width of the main lobe at the half-power point,

is approximately 1.5 Af. Let

-~ be the number of points per
M
K i
segment; then when - = N (from eq. (4)), the spacing of the
M
M
power estimates is aAf, equal to or
K at

1.5M
B = 1.5 af

R

Note that in this figure contiguous windows overlap less
than for the Blackman-Tukey algorithm; therefore, contiguous
ensemble average estimates are statistically more independent
of each other.

13



Frequency Avéraging

This algorithm is a very simple modification of the ensemble
averaging algorithm.

(1) Perform steps (2) to (6) of the ensemble averaging method
for the entire time function consisting of K points. Denote the

resulting spectrum G'i, where 1 =0, 1, . . .,

5.

(2) The smoothed power spectral density estimates, here
denoted Gj’ are computed as the means of M contiguous values of
G'i as follows:

1 1 ]
. G K + G ka2 + « « « + G KM
j = " I
and
K
J=1’2’°‘-7‘2"[\'4; k=(J"1)M

(3) (Optional) Postdarken as above.

The expected window 1s now the sum of M contiguous windows,
each as shown in figure 6 (see ref. 7, p. 296). The frequency
average expected window for M = 16 1is shown in figure 7; the
estimate is displayed at the midpoint of the window, i.e., the jth

(23 - 1)M + 1

point of the spectrum is displayed at frequency .
2K At

The final frequency spacing of the power estimates Af is then

M + 0.5
» and the bandwidth B, is approximately ————. As can be
K at K At

14




seen in figure 7, the'expeeted window is now essentially rectan-
gular, with virtually no overlap of contiguous windows.

In comparison to ensemble averaging, frequency averaging has
this additional advantage: for the same frequency spacing of the
final power estimates (and approximately the same bandwidth Be)’
the lowest frequency analyzed is lower by approximately a factor

M+ 1
2K At

of two. The lowest frequency estimate appears at for fre-

quency averaging, as opposed to

for ensemble averaging.

SYNTHETIC RANDOM TIME FUNCTIONS

For this specific study, the synthetic random time function
must possess the significant characteristics of atmospheric tur-
bulence velocities. These include randomness, a nearly Gaussian
probability density function, and a power spectral density repre-
sentative of that for turbulence. The power spectral density was
chosen to be the Dryden spectrum (see ref. 8) to parallel the study
of reference 3. The differences between the Dryden and Von Karman
spectra are not considered to be significant for the present pur-
poses. The Dryden spectrum is described by

(5)

where

2nfL

15



(sometimes referred to as "dimensionless wave number"), and where

L integral scale of turbulence
V velocity of aircraft
f frequency, Hz

In terms of temporal frequency

<21rf‘L 2
1 + 3 )
v
(6)
o2
(21rf'L>
1 +
vV

The synthetic function, of practical necessity, is synthesized
from a finite set of numbers and therefore, cannot completely
describe a power spectral density that is continuous in frequency.
Consequently, it is necessary to analyze any particular synthetic
signal for adequacy in this respect. This was done for the signal

o (L,V,f)

used in reference 3 (designated herein as Signal B) and details are
given in the appendix. Signal B is a model of a process whose fre-
. i
quency components are harmonics of the fundamental frequency -
It is therefore not a good representation of atmospheric turbulence,
whose frequency components are distributed continuously over all
frequencies. The frequency components of Signal B coincide pre-
cisely with the nulls of the boxcar window and with the center of
the main lobe. Consequently, Signal B can produce no bias error

with the boxcar window. This effect is considered unrealistic with

respect to simulating atmospheric turbulence.

16



To model the continuous frequency distribution of turbulence
more accurately, an alternate synthetic time function, designated
Signal A, was derived for use in this study. Details concerning

this signal are also given in the appendix.
Signal A = }: H(f) sin (2xfgn At + eoR)

where both fp and ey are randomly picked values in each of
1250 frequency intervals. Thus, spectral values do not neces-
sarily coincide with boxcar window nulls, and the approximation
of atmospheric turbulence is improved. A short segment of the
time function is shown in figure 8; its appearance is very much
like that of actual turbulence time-history measurements. The
cumulative distribution function, shown in figure 9, is very

nearly Gaussian, as desired, and as expected from the procedure

used. -
CONDITIONS CONSIDERED FOR SPECTRAL ESTIMATION

To determine a practical range of bandwidth B, which
should be investigated for bias error effects, constraints
imposed by sample-length limitations of actual turbulence data
must be considered. It would, of course, be desirable to have
the spectral estimates very closely spaced (small Be) in the
frequency region approaching zero (see fig. 3) to define a knee,
if one exists. As the integral scale of turbulence L becomes
larger in the mathematical model, the knee frequency moves closer
to zero frequency, and in fact might be very close to zero fre-
quency for certain meteorological conditions. For example, if L
is 762 m (2500 ft) in the Von Karman turbulence model (a present
turbulence design requirement; see ref. 9) and the velocity of
the airplane is 183 m/s (600 ft/sec), the knee peak appears at
0.017 Hz., Larger L values result in lower knee frequencies.

As the bandwidth is made smaller (for a given sample length
of actual turbulence data), the random fluctuations of the power

17



estimates become larger, eventually making it impossible to
determine whether a knee is present. Past experience and a cal-
culation of the magnitude of the random power fluctuations based
upon so-called "statistical degrees of freedom" (see ref. 7) indi-
cate that approximately 30 degrees of freedom is as low as can be
tolerated.

According to reference 7 (p. 219),

Degrees of freedom (d.o.f.) = 2B_T (7)

where Be is bandwidth in Hz, and T is total sample length in
seconds. Past experience with turbulence data collection indi-
cates that usable sample lengths of more than 10 minutes duration
are not readily obtainable, particularly at the higher altitudes.
If we assume the maximum practical sample length to be 10 minutes
(or 600 sec), and that 30 d.o.f. can be tolerated, then B, is
0.025 Hz.

Based on the preceding discussion, indications are that
although narrower bandwidths for better spectral resolution at
very low frequencies would be desirable, bandwidths smaller than
about 0.025 Hz are not practical because of sample length limita-
tions. The present bias error investigation will therefore be
confined to bandwidths on the order of 0.025 Hz and greater. (It
should be noted that random error is only of indirect concern in
this study, and that it has, in fact, been minimized by the syn-
thetic time functions so as not to obscure the bias error under
study.)

Since this study was initiated by following the procedure of
reference 3, the numbers actually used in equation (6) to generate
the synthetic signals were L = 191 m (627 ft) and V = 183 m/s
(600 ft/sec) to conform with reference 3. The synthetic time
function values were spaced at an interval of At = 0.04 sec, and
this spacing provided a Nyquist frequency of the resulting power
spectral density of 12.5 Hz, also in accordance with reference 3.

18



A more general, and possibly more useful, procedure would
have been to generate the spectral results in terms of dimension-
less wave number k' (see eq. (5)) rather than in terms of tem-
poral frequency. The éorrect shape of the spectrum is all that is
required, however, and the exact location of the knee peak along
the frequency axis will not affect the magnitude of the bias error
obtained. If the location of the knee peak is known in advance,
and/or if an estimate of bias error for a specific L, B, or V
at a particular frequency relative to the knee peak is needed, then
k' units can be helpful. A k' scale has therefore been included
on all the spectral plots presented. Also B is given in k'

e
units as well as in Hz, and is then designated Be

The synthetic time function was processed as i% it were mea-
sured data. Spectra were estimated by the three algorithms with
and without first-difference prewhitening. As indicated, the min-
imum bandwidth desired was approximately 0.025 Hz. The nearest

bandwidths readily obtainable with the three algorithms were
By = 0.0244, 0.0366, and 0.0260 Hz for Blackman-Tukey, ensemble
averaging, and frequency averaging (or Bek' = 0.16Q, 0.240, and
0.171), respectively. These values were determined as discussed
under power spectral density algorithms, by use of 1024 nonnega-
tive lags for Blackman-Tukey, 15 time segments each containing
1024 data points for ensemble averaging, and frequency averaging
over 16 contiguous raw estimates obtained by transforming 15 871
data points plus 513 zeros to make an even power of two. The
Af frequency spacing was thus 0.0122 Hz for Blackman-Tukey and
0.0244 Hz for ensemble averaging and frequency averaging.
Additional comparisons between prewhitened and non-prewhitened
spectra were made with the Blackman-Tukey algorithm for an inter-

mediate B, of 0.195 Hz <Bek' = 1.28) employing 128 lags, and for
a very wideband B, of 0.391 Hz or B, , of 2.56 (64 positive
lags). The wideband spectra simulated results obtained in earlier

years before FFT was available,

19



RESULTS AND DISCUSSION

In the following figures, the power spectral density is plot-
ted along the vertical axis, and the frequency in Hz and in k'
units is plotted along the horizontal axis, both on logarithmic
scales. The true power spectral density ¢T(f) is modified by
a multiplication factor selected so that the area under @T(f)
will be equal to the variance of the synthetic random time func-
tion. The obtained ¢;(f) 1is superimposed on the plot of each
computed power spectral density. In each case, the "true" spec-
trum is labeled "reference" and the spectrum calculated from the
time history is labeled "computed."

The results for the minimum bandwidth case, presented in fig-
ures 10, 11, and 12, indicate that all three algorithms define the
knee adequately. There is an indication of bias error (a slight
overestimation in the estimates nearest zero frequency) only in the
spectrum obtained with the Blackman-Tukey algorithm (fig. 10).

With all other parameters held fixed, first-difference pre-
whitening and postdarkening were applied. In each case the effect
(see figs. 13, 14, and 15) was an overestimation at the lowest fre-
gquencies and no significant improvement elsewhere. The curiously
large difference between the amount of distortion obtained by using
the Blackman-Tukey algorithm and the amount of distortion obtained
by using the direct-transform algorithms needs an explanation. To
rule out the possibility of error in the Blackman-Tukey portion of
the computer program, the synthetic signal was processed through a
lag-product Blackman-Tukey program (see ref. 10), and the results
were in close agreement with those obtained from using the FFT
version.

The first-difference prewhitened true Dryden spectrum is shown
in figure 16; it is the product of the first-difference transfer
function squared {H(f)12 and the true Dryden spectrum of equa-
tion (6). Since this curve is concave upward in the frequency range
of the first several points of the spectrum, the estimates at these

20



points should contain positive bias errors arising from the window
convolution described earlier. The postdarkener function (eq. (3))
in this frequency range is quite large, going to infinity at zero
frequency; therefore, the postdarkening operation could transform
the positive bias errors mentioned earlier into a curve similar to
figure 13 or to figures 14 and 15.

To determine the precise amount of bias error caused by window
convolution alone, a digital simulation of the Blackman-Tukey win-
dow convolution was performed as follows: The Hann spectral window,

where Af = is the same as the Af for figure 13 (see fig. 2(b)),

el B

was represented on the interval -8 Af to 8 Af as a 16 001-point
sampled-data function. The prewhitened Dryden spectrum, includfhg

the negative~frequency plane, was also represented as a sampled-

Af
data function, with the same frequency spacing —666. The con-

volution integral was then computed at frequencies i af, where

i=1, 2, ., 10 from the vector dot product of the shifted
window and the theoretical curve. These 10 values were then post-
darkened. The maximum bias occurred at i = 1, the spectrum at

this point being approximately 1.5 times the correct value. There-
fore, window convolution bias alone is not sufficient to account
for the Blackman~Tukey results of figure 13, although it probably
accounts for a substantial portion of the error in the two direct-
transform algorithm results (figs. 14 and 15).

Two additional possible sources of error are now discussed.
The autocorrelation function (see ref. 8, p. 13) indicates a high
correlation between successive values of the time function (that
is, at 1t = At). This implies that the application of the first-
difference filter (eq. (2)), where the subtraction of successive
points occurs, results in a loss of precision of the filter output
‘relative to the precision of the input. (Points of nearly equal
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magnitude are being subtracted.) Because such round-off error is
random, it adds a certain amount of white noise to the prewhitened
spectrum and thus contributes to the positive bias near zero fre-
quency. However, figures 14 and 15 suggest that this contribution
is evidently small. Such an effect would be equal in all three
algorithms.

The final source of error considered here is the computer round-
off error which occurs during calculation of the power spectral den-
sity from the time function. It should be noted that the Blackman-
Tukey algorithm requires more than twice the number of computations
as the other two algorithms (two full-length transforms plus one
short transform for Blackman-Tukey, as compared with one full-length
transform for the other two algorithms). The lag-product Blackman-
Tukey algorithm requires still more calculations than the FFT ver-
sion does. This computer round-off error is also random and could
contribute a flat error spectrum to the positive bias near zero fre-
quency. Therefore, if the white noise spectrum for the Blackman-
Tukey algorithm is greater than those for the other two algorithms,
and is as large as the approximation in figure 16, it could con-
tribute to window convolution bias error and could account for the
effect observed in figure 13. This is probably the source of the
large difference observed in figure 13 in comparison with the dif-
ferences shown in figures 14 and 15.

The results obtained when a very wideband window is employed
with the Blackman-Tukey algorithm (B = 0.391 Hz or Be,, = 2.56)
are now examined. Windows of about this size, together with first-
difference prewhitening, were generally used for processing turbu-
lence data before the FFT was available. (The data presented here,
although processed by the use of FFT, are mathematically equivalent
to the previously used lag-product Blackman-Tukey method, as indi-
cated earlier.) The spectra with and without prewhitening are shown
in figures 17(a) and 17(b), respectively. The corresponding pair
for an intermediate bandwidth of 0.195 Hz (Bek' = 1.28) are shown

in figure 18. In the past, the lowest frequency estimate from the
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Blackman-Tukey 1ag-pr6duct algorithm was assumed to be at exactly
zero frequency and was discarded because the postdarkener filter
function (eq. (3)) goes to infinity at zero frequency, and also
because the turbulence measurements were known to be contaminated
by instrumentation drift problems at frequencies close to zero.

If this lowest frequency point (which is postdarkened and dis-

Af
played at E— on these plots, as indicated earlier) is discarded,

the lowest frequency estimate then appears at 0.195 Hz in fig-
ure 17(a) and agrees very well with the reference curve. The next
power estimate, which appears at 0.39 Hz, slightly underestimates

the reference curve. For the non-prewhitened result (fig. 17(b)),
the corresponding points underestimate and overestimate the true
'spectrum to a somewhat greater extent, so that for this large band-
width the prewhitened results are indeed better (when the "zero
frequency" estimate is ignored). On the other hand, figure 18
shows that when the bandwidth is decreased to 0.195 Hz, the non-
prewhitened results are better, whether the lowest frequency power
estimate is ignored or not.

These intermediate bandwidth results indicate that in the past,
the use of first-difference prewhitening could have obscured a pos-
sible knee in the experimental data. (See fig. 18(a).) It should
be recalled, however, that interest at the time was directed toward
defining the higher frequency end of the spectrum (using wider band-
widths) with relatively short turbuience sample lengths.

As an illustration of the minimum sample length required for
this bandwidth, assume that use of 30 d.o.f. in equation (7) does
not result in intolerably large random power fluctuations. A Be .
of 1.28 produces a lowest power estimate at about the knee peak
location, and requires a sample length of only about 77 sec for the

L
ratio of V assumed here.
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Trade-off factors for real data are such that analyzing power
spectra to longer wavelengths (and thus lower frequencies) requires
a smaller Be (also Bek')’ which in turn requires longer sample
lengths to suppress the random statistical fluctuations of the power
estimates. As Bek' becomes smaller than about 1.2, which it must
to analyze longer wavelengths or adequately resolve a possible knee,
first-difference prewhitening is no longer desirable and, in fact,
increases the bias error if the true spectrum is similar in shape to
the Von Karman or Dryden turbulence model.

The practical procedure should therefore consist of choosing a
minimum Be based on the sample length available. A determination
or "rule of thumb" in terms of Bek' will not suffice, since it
must be assumed that L, the integral scale of turbulence, is not
known at this point, nor can it be assumed that the Von Karman or
Dryden turbulence model is applicable, for that matter. Obtaining
sufficiently long data samples to suppress the random error, which
is considerably greater than bias error at this point, poses a prob-
lem. It has been suggested that the ensemble averaging algorithm
could be used to alleviate the difficulty by combining segments
of data obtained from repeated passes through the same turbulent
area, or from different turbulent areas known to have been generated
by the same meteorological process. Such a procedure might be ques-
tionable, however, since it would be based on the assumption that
the spectral characteristics of all the segments would be identical.

If it is necessary to use an intermediate size bandwidth (that
is, around 0.1 to 0.2 Hz) because of sample length limitations, some
special type of prewhitening other than first difference could be .
beneficial. The spectral shape and frequency location of the knee
must then be estimated or known in advance. For example, long sam-
ples in a specific meteorological condition could have previously
been processed and would lend confidence to a particular shape and
knee location. Care must be exercised, however, since a "wrong
guess" would lead to greater distortion of the final result, rather

than less.

24



If wide bandwidth windowing is necessary (that is, Bek' of
about 2.6 and larger) because of limitations in sample length, then
first-difference prewhitening is required for accurate spectral '
estimates to be obtained, as shown by the results given in figure 17.
It is also recommended that the "zero frequency" estimate obtained
with the Blackman-Tukey algorithm be discarded, as was done in the
past, especially in view of the large distortion obtained near zero
with this algorithm when using first-difference prewhitening. The
spectral knee could not, of course, be resolved in this case since
the lowest frequency spectral estimate obtained would be above the
knee location.

CONCLUDING REMARKS

A study was made of the effects of prewhitening on determina-
tion of power spectra of atmospheric turbulence at long wavelengths.
A synthetic time history was generated by combining sine waves of
random phase and frequency, amplitudes being adjusted to produce a
power spectrum of known shape approximating that of atmospheric tur-
bulence. The synthetic time history was then used in a computational
experiment to assess bias errors in power spectra computed with and
without prewhitening.

Results of this experiment show that for minimum bandwidths
deemed practical for processing 10-minute data samples (equivalent
spectral bandwidth of 0.025 Hz), the finite bandwidth bias errors,
for each of three power spectral density algorithms implemented by
the fast Fourier transform, are negligible and are a great deal
smaller than the random type errors expected. Prewhitening is
therefore not recommended when power spectral estimates are obtained
by employing these narrow bandwidths. First-difference prewhitening
in particular was shown to have an undesirable effect upon power
estimates at the lowest. frequencies, especially when used with the
Blackman-Tukey algorithm.
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First-difference prewhitening is not recommended when inter-
mediate size bandwidths (that is, around 0.1 to 0.2 Hz) are used,
although some special type of prewhitening could be beneficial if
the spectrum shape and knee location were adequately known. First-
difference prewhitening is, however, recommended for power estimates
above the "knee" frequency for bandwidths of 0.3 Hz and greater.

For model studies of spectral bias errors of a random time
series, the function-generation technique used here is favored over
the technique used by Otnes, Nathans, and Enochson (AFFDL-TR-69-11).
The random spectral errors observed can be made arbitrarily small
for a given function length by summing a sufficiently large number
of random-frequency, random-phase sinusoids.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

August 11, 1976
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APPENDIX
SYNTHETIC RANDOM TIME FUNCTIONS

Synthetic random time functions are often used in lieu of
random time functions representing physical random processes.
For example, aircraft flight simulators include responses to
atmospheric turbulence velocities that are approximated by ran-
dom time functions generated by suitably filtered electronic
noise signals or by digital computer programs. This approach has
the advantage of providing (a) arbitrarily chosen intensities,
(b) stationarity if desired, and (c) simulation of the effect of
various integral scales of turbulence.
' In the construction of digitally generated random time func-
tions, care must be taken to assure that the significant features
of the physical random process are modeled adequately. The digi-
tal function, of course, must be constructed from a finite number
of randomly chosen elements. There is the possibility that a par-
ticular choice of elements may not satisfactorily model the physical
process for certain purposes even though the probability distribu-
tion and spectral shape are correct and the random time function
appears to be representative of the physical process. This appen-
dix presents an example of such an approximation (designated Sig-
nal B) for atmospheric turbulence with respect to the assessment
of effects of various spectral windows. An alternative approxima-
tion, described in the text of this report (designated Signal a)
is also discussed, with the generation technique described in more
detail.

Signal B

Signal B was generated as follows, in accordance with
reference 3: ’
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APPENDIX

(1) 16 384 random numbers were generated. These numbers were
independent, Gaussian, with zero mean and unit variance. The At
was selected to be 0.04 sec.

(2) The complex FFT of these data was multiplied by the desired
transfer function H(f), the square root of equation (6), with
L =191 m (627 ft) and V = 183 m/s (600 ft/sec).

(3) The inverse FFT was then taken.

The resulting function from step (2) is defined only at har-
monically related frequencies n Af where n =0, 1, 2, . . .,

1
8192, and where Af = ————. The inverse transform of each of

16 384 at

these is a pure harmonic sinusoid with frequency n Af; therefore
Signal B is the sum of the harmonic sinusoids. The spectrum of
the model differs significantly from that for atmospheric turbu-
lence since the turbulence spectrum is continuous and contains
nonharmonically related components.

The analysis of Signal B by the boxcar spectral window
(fig. 1(b)) in equation (1) yields no bias error at all as a
result of the coincidence of nulls in the spectral window with

the spectral values of Signal B at f =

TR

A secondary indication of the improper behavior of Signal B
in comparison to atmospheric turbulence can be seen in figure 19.
Here Signal B was processed by the frequency averaging algorithm
M = 16 with the Hann window (fig. 19(a)), and with the boxcar
window (fig. 19(b)). It is apparent that the boxcar window sup-
pressed random error to a considerably greater extent than did
the Hann window, an effect exactly opposite from that which would
be obtained with real turbulence data. A probable explanation 1is

+1
that the Hann window does not have nulls at — and -— as does
P P
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APPENDIX

the boxcar window. (See fig. 2(b).) The inherent characteristics
of Signal B would thus appear to make it unsuitable for use in the
present study.

Signal A

Signal A was also generated to contain 16 384 data points
spaced at an interval of at = 0.04 sec, which yielded a Nyquist
frequency 12.5 Hz. The signal was constructed as.follows: The
total frequency range, 0 to 12.5 Hz, was partitioned into 1250
equal intervals of 0.01 Hz each. For each 0.01 Hz interval, a
uniform-distribution random number generator was used to select
a frequency f and a phase angle ¢, with f 1lying in the inter-
val and -7 < ¢ £ w. For each frequency and phase angle thus
selected, the sinusoid H(f) sin (2%fn at + ) (where n = 1, 2,

., 16 384) was computed. Signal A is the sum of these 1250
sinusoids. The transfer function H(f) used to adjust the ampli-
tude of the individual sinusoids was, of course, the same one used
for Signal B, that is, the square root of equation (6), with
L = 1917 m (627 ft) and V = 183 m/s (600 ft/sec).

Since both the frequency and phase are made random by the con-
struction procedure, Signal A is not made up exclusively of har-
monic components which coincide with boxcar window nulls. The
approximation of atmospheric turbulence is thus improved. As
described in the main body of this report, a short segment of Sig-
nal A is shown in figure 8. The cumulative distribution function,
shown in figure 9, is very nearly Gaussian, as desired, and as
expected from the procedure used.

An additional point worth noting is that the frequency spac-
ing of the sinusoids, one in each 0.01 Hz interval, is such that
the smallest bandwidth B, employed to process Signal A (about
0.024 Hz) encompassed at least two sinusoids. Although not tested
experimentally, the random power fluctuations obtained in the sbec-
tral analysis (for a given Be) could in all likelihood be reduced
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APPENDIX

to an arbitrarily low level by increasing the number of sinusoids
in each frequency interval. The effect would be similar to that
achieved by increasing the sample length of actual turbulence data.
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edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerming its activities and the results thereof.”
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NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a

contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons. Also includes conference
proceedings with either limited of unlimited
distribution.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA

contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include final reports of major
projects, monographs, data compilations,
handbooks, sourcebooks, and special
bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND

SPACE ADMINISTRATION

Washington, D.C. 20546



